A Subspace Learning Framework for Cross-Lingual Sentiment Classification with Partial Parallel Data

نویسندگان

  • Guangyou Zhou
  • Tingting He
  • Jun Zhao
  • Wensheng Wu
چکیده

Cross-lingual sentiment classification aims to automatically predict sentiment polarity (e.g., positive or negative) of data in a label-scarce target language by exploiting labeled data from a label-rich language. The fundamental challenge of cross-lingual learning stems from a lack of overlap between the feature spaces of the source language data and that of the target language data. To address this challenge, previous work in the literature mainly relies on the large amount of bilingual parallel corpora to bridge the language gap. In many real applications, however, it is often the case that we have some partial parallel data but it is an expensive and time-consuming job to acquire large amount of parallel data on different languages. In this paper, we propose a novel subspace learning framework by leveraging the partial parallel data for cross-lingual sentiment classification. The proposed approach is achieved by jointly learning the document-aligned review data and un-aligned data from the source language and the target language via a non-negative matrix factorization framework. We conduct a set of experiments with cross-lingual sentiment classification tasks on multilingual Amazon product reviews. Our experimental results demonstrate the efficacy of the proposed cross-lingual approach.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural Correspondence Learning for Cross-Lingual Sentiment Classification with One-to-Many Mappings

Structural correspondence learning (SCL) is an effective method for cross-lingual sentiment classification. This approach uses unlabeled documents along with a word translation oracle to automatically induce task specific, cross-lingual correspondences. It transfers knowledge through identifying important features, i.e., pivot features. For simplicity, however, it assumes that the word translat...

متن کامل

Active Learning for Cross-Lingual Sentiment Classification

Cross-lingual sentiment classification aims to predict the sentiment orientation of a text in a language (named as the target language) with the help of the resources from another language (named as the source language). However, current cross-lingual performance is normally far away from satisfaction due to the huge difference in linguistic expression and social culture. In this paper, we sugg...

متن کامل

Cross-lingual sentiment classification: Similarity discovery plus training data adjustment

The performance of cross-lingual sentiment classification is sharply limited by the language gap, which means that each language has its own ways to express sentiments. Many methods have been designed to transmit sentiment information across languages by making use of machine translation, parallel corpora, auxiliary unlabeled samples and other resources. In this paper, a new approach is propose...

متن کامل

Cross-Lingual Mixture Model for Sentiment Classification

The amount of labeled sentiment data in English is much larger than that in other languages. Such a disproportion arouse interest in cross-lingual sentiment classification, which aims to conduct sentiment classification in the target language (e.g. Chinese) using labeled data in the source language (e.g. English). Most existing work relies on machine translation engines to directly adapt labele...

متن کامل

Cross-lingual Sentiment Lexicon Learning With Bilingual Word Graph Label Propagation

In this article we address the task of cross-lingual sentiment lexicon learning, which aims to automatically generate sentiment lexicons for the target languages with available English sentiment lexicons. We formalize the task as a learning problem on a bilingual word graph, in which the intra-language relations among the words in the same language and the interlanguage relations among the word...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015